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COMMUNICATIONS TO THE EDITOR

Convergent Synthesis of Arisugacin Skeletons
and Their Acetylcholinesterase

Inhibitory Activity

Sir:

In the course of our screening of microbial metabolites
that inhibit the activity of acetylcholinesterase (AchE), we
isolated potent and selective inhibitors of AchE, arisugacin
A (1) and B (2) from the culture broth of Penicillium sp.
FO-42591~4^ together with the structurally related known
compound, territrem B (3) (Fig. 1)5'6). Interestingly,

structures 1-3 resemble the pyripyropene A (4), which

strongly inhibited acyl-CoA : cholesterol acyltransferase
(ACAT), the enzyme that catalyzed intracellular
esterification of cholesterol, and was isolated from
Asperigillusfumigatus FO-1289 in our group7~10). The first

total synthesis of pyripyropene A has been also achieved
via a convergent and efficient strategy1 1}.

Herein, we describe the stereoselective and concise
convergent approach of arisugacin A, designed to afford
easy access to a variety of analogs to clarify the structure-
activity relationships12"^ 1^.

From the retrosynthetic perspective (Scheme 1), we
envisioned the construction of advanced olefin 5 via a
Knoevenagel type reaction of the known 4-hydroxy 2-

pyrone 10 with a,/3-unsaturated lactol 9 in the presence of
amino acid; amine elimination of 7, and 6-electron

electrocyclic ring closure of 6 would then deliver 5 with the
requisite anti geometry at the BC ring fusion.

The sesquiterpene subunit 9 was anticipated to derive

from the known lactone ll (Scheme 2), an intermediate for
the synthesis of forskolin15), readily available from a-

ionone in 6 steps in a 36% overall yield. Toward this end,
stereoselective epoxidation (ra-CPBA, CH2C12) of ll

furnished a-epoxy lactone 12 in a 77% yield with the
corresponding /3-epoxy isomer (10% yield). 12 was

reduced to the lactol 9 (DIBAL, CH2C12, -78°C) with the
epoxide remaining unopened.

Towardthe construction of the arisugacin skeleton, the

crucial sequence joining 10 with ABsubunit 9 proceeded
readily in EtOAc with L-proline at 80°C for 21 hours; a
Knoevenagel type reaction followed by in situ
/^-elimination of the amine and 6^-electron cyclization
formed the pentacyclic olefln 5 predominantly in a 50%

yield for the three steps. The requisite anti BCring junction
in 5 derived from 6/r-electron electrocyclic ring closure
trans to the C(12b) angular methyl group. The angular

methyl group at C(6a) was established as a (5 configuration
because of the NOEexperiments16).

Furthermore, lactone 12 was reduced to the triol
13 (LiAlH4, A1C13, THF) in a 98% yield (Scheme
3). 13 was converted to a,/3-unsaturated aldehyde

14 [(tetrapropylammonium perruthenate (TPAP), JV-
methylmorpholine N-oxide (NMO), CH2C12)] in a 73%

yield. The coupling reaction of a,/3-unsaturated aldehyde

Fig. 1. Structures ofarisugacins A~B (1-2) and territrem B (3) and pyripyropene A (4).
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Scheme 1. Retrosynthetic analysis ofarisugacin A.

Scheme 2. Synthesis of the olefin 5.

14 with 10 under the same condition afforded the desired
pentacycle 15 predominantly in a 48% yield. 15 was then
converted to the ketone 16 (TPAP, NMO, CH2C12)

quantitatively. The pentacycle 16 should prove to be useful

for the synthesis of arisugacin A (1). Analytical data of
16: Rf=0.44 (silica gel, CHC13:MeOH=10:1), mp

187~190°C, (CHC13), IR (KBr) v cnT1: 3427 (OH), 1711
å L3J

(pyrone), 1551, 1516, 1464 (arom.), 1269 (OCH3), !H-
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Scheme 3. Synthesis of the ketone 16

NMR (400MHz, CDC13) 5: 1.04 (3H, s, 4a-CH3), 1.15

(3H, s, 4j3-CH3), 1.50 (3H, s, 6a/3-CH3), 1.60 (3H, s, 12b/3-

CH3), 1.63 (1H, ddd,7=13.5, 7.5, 5.5Hz, 3j3-H), 1.80 (1H,

ddd, 7=14.0, 5.5, 3.5Hz, 6a-H), 1.93 (1H, dt, 7=14.0,

4.5Hz, 6/3-H), 2.00 (1H, ddd, 7=14.0, 4.5, 3.5Hz, 5a-H),

2.01 (1H, ddd, ,7=13.5, 9.5, 5.5Hz, 3a-H), 2.39 (1H, dt,
7=14.0, 5.5Hz, 5)3-H), 2.59 (1H, ddd, 7=14.5, 7.5, 5.5Hz,

2a-H), 2.76 (1H, ddd, 7=14.5, 9.5, 5.5Hz, 2/3-H) 3.89 (3H,
s, 4'-OCH3), 3.90 (3H, s, 3'-OCH3), 6.35 (1H, s, 8-H), 6.87

(1H, d,7=8.0Hz, 5'-H), 7.28 (1H, d,7=2.0Hz, 2'-H), 7.36

(1H, dd, 7=8.0, 2.0Hz, 6'-H), 7.38 (1H, s, 12-H), 13C-

NMR (100.6MHz, CDC13) 8: 211.5 (C-l), 162.7 (C-ll),

162.0 (C-7a), 160.2 (C-9), 151.5 (C-4'), 149.2 (C-3'),
134.5 (C-12a), 124.6 (C-l'), 119.0 (C-6'),"118.5 (C-12),

111.1 (C-5'), 108.2 (C-2'), 100.7 (C-lla), 96.1 (C-8), 79.6

(C-6a), 78.8 (C-4a), 56.9 (C-12b), 56.0 (3'-OCH3), 55.9

(4r-OCH3), 37.6 (C-4), 36.9 (C-3), 36.3 (C-2), 33.5 (C-5),

27.9 (12bj8-CH3), 27.3 (6aj3-CH3), 26.6 (4a-CH3), 25.7
(4j3-CH3), 24.3 (C-6).

HRFABMS m/z: 481.2226 [M+H]+, Calcd for C28H33O7:
481.2194 [M+H].

The AchE inhibitory activity of synthetic compounds
was measured according to the previous description2^

Compounds 5 and 15 did not inhibit AchE at 100^m.

However, 16 inhibited AchE with the IC50 value of 100 ^m.
Peng17) reported that the AchE inhibitory activity of 2,3-
dihydroterritrem B was 10 times weaker than that of

* Corresponding: omura-s@kitasato.or.jp

territrem B. Therefore the enone moiety on ring A and 12a-
OH may be important for AchE inhibition.
In conclusion, we developed a concise convergent route

to the pentacyclic frameworks of arisugacin A. Efforts to
complete the total synthesis of arisugacin A are still
underway.
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